		l am	l am at	l am
	Foundational and Conceptual	working	ARE	working at
	Achievement Statements	towards		greater
		ARE		depth
5F1	I can read, write, order, compare and round			
	numbers to at least 1,000,000 and determine			
	the value of each digit			
5F2	I can round numbers to at least 1,000,000 and			
	determine the value of each digit			
5F3	I can count forwards and backwards in steps of			
	powers of 10 for any given number up to			
	1,000,000			
5F4	I can interpret negative numbers in context ,			
	and count forwards and backwards with positive			
	and negative whole numbers through zero			
5F5	I can read Roman numerals to 1000(M) and years			
	written in Roman numerals			
5 <i>C</i> 1	I can estimate the answer to, and solve, number			
	and practical problems that involve numbers up to			
	1,000,000			
5C2	I can solve single and multi-step practical			
	problems involving a combination of addition,			
	subtraction, multiplication and division			
	calculations, including understanding the meaning			
	of the equals sign			
5C3	I can explain my choice of calculation when			
	solving single and multi-step problems			
5 <i>C</i> 4	I can use rounding to check answers to calculations			
	and determine, in the context of the problem,			
	levels of accuracy			
5C5	I can explain what the vocabulary of prime			
	numbers mean including prime number, prime factor			
	and composite (non-prime) number			
5 <i>C</i> 6	I can establish whether a number up to 100 is			
	prime and recall the numbers up to 19			
5F6	I can add and subtract whole numbers with more			
	than 4 digits using efficient written method			
	(columnar addition and subtraction)			
5F7	I can add and subtract numbers mentally with			
	increasingly large numbers			

5F8	I can multiply numbers up to 4-digits by a 1 or			
	2-digit number using an efficient written			
	method, including long multiplication for 2-digit			
	number			
5F9	I can divide numbers up to 4-digits by a 1-digit			
	number using the efficient written method of			
	short division and interpret remainders			
	appropriately for the context			
5F10	I can multiply and divide numbers mentally			
	drawing upon known facts including multiplying			
	and dividing by 10, 100 and 1000			
5F11	I can identify different factor pairs for a given			
	number			
5 <i>C</i> 7	I can recognise and use square numbers and			
	square roots, and the notation for squared (²)			
	and cubed (3)			
5F12	I can compare and order fractions whose			
	denominators are all multiples of the same number			
5F13	I can convert mixed numbers and improper			
	fractions from one form to the other			
5F14	I can recognise and use thousandths and relate			
	them to tenths, hundreds and decimal			
	equivalents			
5F15	I can read and write decimal numbers as fractions			
	e.g. 0.71 = 71/100			
5F16	I can read, write, order compare and round			
	numbers with up to three decimal places			
5C8	I can solve problems involving multiplication and			
	division including scaling by simple fraction and			
	problems involving simple rates			
5C9	I can name and write equivalent fractions of a			
	given fraction, including tenths and hundredths			
5 <i>C</i> 10	I can add and subtract fraction with the same			
	denominator and relate fraction including writing			
	mathematical statements that exceed 1 as a			
	mixed number: (e.g. 2/5 + 4/5 = 6/5 = 11/5)			
5 <i>C</i> 11	I can multiply proper fractions and mixed numbers			
		1	1	1
	by whole numbers, supported by materials and			

5C12	I can round decimals with two decimal places to		
5012	the nearest whole number or to the first		
	decimal place		
5C15	I can solve problems which require knowing		
	percentage and decimal equivalents of $\frac{1}{2}$, $\frac{1}{4}$		
	1/5, 2/5 and 4/5 and those fractions with a		
	denominator of a multiple of 10 or 25		
5 <i>C</i> 13	I can solve problems involving numbers up to		
	three decimal places		
5F17	I can write simple fractions and decimals as		
	percentages (e.g. ½ = 0.5 = 50% = 50/100)		
5 <i>C</i> 14	I can explain what the percent symbol means		
	and relate my understanding to parts of a whole		
	number or a whole quantity		
5 <i>C</i> 26	I can use symbols and letters to represent		
	variables and missing numbers in mathematical		
	situations involving arithmetical rules (e.g a+b =		
	b+a)		
5C27	I can use symbols and letters to represent		
	variables and missing numbers in mathematical		
	situations involving number puzzles		
5 <i>C</i> 28	I can use symbols and letters to represent		
	variables and missing numbers in mathematical		
	situations involving missing numbers, lengths,		
	coordinates and angles		
5F21	I can identify 3-D shapes, including cubes and		
	cuboids, from 2-D representations		
5 <i>C</i> 20	I can draw shapes from given dimensions and		
	angles		
5C21	I can use the properties of rectangles to deduce		
= 40.0	related facts and find missing lengths and angles		
5C22	I can distinguish between regular and irregular		
	polygons based on reasoning about equal sides and		
= 40.0	angles		
5C23	I can prove that shapes with the same areas can		
	have different perimeters and vice versa		
5F22	I can identify, describe and represent the position		
	of a shape following the reflection or translation		
	using the appropriate vocabulary, and I know that		
	the shape has not changed		

5F23	I can calculate angles where there are two or		
	more angles on a straight line in degrees and		
	say if the angle is acute, reflex, obtuse, right		
	angle or multiples of 90 degrees		
5F24	I can estimate a given angle in degrees (0) and		
	say if the angle is an acute, reflex, obtuse, right		
	angle or multiples of 90°		
5F18	I can measure and calculate the perimeter of		
	composite rectangular shapes in centimetres and		
	metres		
5F19	I can calculate and compare the area of squares,		
	rectangles and composite shapes using standard		
	units, including centimetre squared (cm2) and		
	metre squared (m2) and estimate the area of		
	irregular shapes		
5F20	I can convert between different units of metric		
	measures e.g. kilometre to metre, metre to		
	centimetre, litre to millilitre		
5 <i>C</i> 16	I can say what the equivalences are between		
	common metric and imperial units and estimate		
	equivalences of a given measure		
5 <i>C</i> 17	I can measure force in Newtons		
5 <i>C</i> 18	I can estimate and calculate the volume of cuboids		
	and the capacity of liquids		
5C19	I can solve problems converting between the units		
	of time		
5 <i>C</i> 24	I can complete, read and interpret information		
	in tables, including timetables		
5C25	I can solve comparison, sum and difference		
	problems using information presented in line		
	graphs		